Mediapipe

来自人工智能助力教育知识百科
Liangdaozheng讨论 | 贡献2022年11月14日 (一) 03:46的版本 Mediapipe简介
跳转至: 导航搜索
百科首页 | 3D虚拟世界 | 音乐与人工智能 | 人工智能机器人 | 关于我们 | 网站首页


Mediapipe简介

Mediapipe是google的一个开源项目,可以提供开源的、跨平台的常用ML(machine learning)方案.Mediapipe实际上是一个集成的机器学习视觉算法的工具库,包含了人脸检测、人脸关键点、手势识别、头像分割和姿态识别等各种模型。
Mediapipe具备的优点有:
1)支持各种平台和语言,包括IOS,Android,C++,Python,JAVAScript,Coral等;
2)速度快,各种模型基本上可以做到实时运行。
Mediapipe在实际应用中的例子:
1)人脸检测;
2)FaceMesh:从图像/视频中重建出人脸的3D Mesh,可以用于AR渲染;
3)人像分割:从图像/视频中把人分割出来,可用于视频会议如Zoom、钉钉;
4)手势识别和跟踪:可以识别标出手部21个关键点的3D坐标;
5)人体姿态识别:可以识别标出人体33个关键点的3D坐标。

  • 一些模型的web体验地址(用到电脑摄像头):
   人脸检测:https://code.mediapipe.dev/codepen/face_detection
   人脸关键点:https://code.mediapipe.dev/codepen/face_mesh
   手势识别:https://code.mediapipe.dev/codepen/hands
   姿态识别:https://code.mediapipe.dev/codepen/pose
   自拍头像分割:https://code.mediapipe.dev/codepen/selfie_segmentation

Mediapipe Python的安装和应用

  • 安装
  1. 安装python 3.7以上版本,下载地址:https://www.python.org/getit
    (python安装教程,引自CSDN https://blog.csdn.net/weixin_49237144/article/details/122915089)
  2. 安装Mediapipe
    1)安装OpenCV,终端执行pip install opencv-contrib-python
    2)安装Mediapipe,终端执行pip install mediapipe,或者使用国内镜像 pip install mediapipe -i https://pypi.tuna.tsinghua.edu.cn/simple/br
  • 应用
  1. Mediapipe手势识别

1)OpenCV调用摄像头:

   import cv2
   cap = cv2.VideoCapture(0) #OpenCV调用摄像头,0 == 摄像头,文件路径 == 打开视频
   while True:
       success, image = cap.read()
       img = cv2.cvtColor(iamge,cv2.COLOR_BGR2RGB)   #cv2图像初始化
       cv2.imshow("Image", image)       #CV2窗体,显示摄像头获取到的视频流
       cv2.waitKey(1)      #关闭窗体

2)调用mediapipe中的hands模块:

   mp_drawing = mp.solutions.drawing_utils
   mp_drawing_styles = mp.solutions.drawing_styles
   mp_hands = mp.solutions.hands
   hands = mp_hands.Hands(
       static_image_mode=False,
       max_num_hands=2,
       min_detection_confidence=0.75,
       min_tracking_confidence=0.75)

mp.solutions.drawing_utils是一个绘图模块,将识别到的手部关键点信息绘制道cv2图像中,mp.solutions.drawing_style定义了绘制的风格。
mp.solutions.hands是mediapipe中的手部识别模块,可以通过它调用手部识别的api,然后通过调用mp_hands.Hands初始化手部识别类。
mp_hands.Hands中的参数:

   1.static_image_mode=True适用于静态图片的手势识别,Flase适用于视频等动态识别,比较明显的区别是,若识别的手的数量超过了最大值,True时识别的手会在多个手之间不停闪烁,而False时,超出的手不会识别,系统会自动跟踪之前已经识别过的手。默认值为False;
2.max_num_hands用于指定识别手的最大数量。默认值为2;
3.min_detection_confidence 表示最小检测信度,取值为[0.0,1.0]这个值约小越容易识别出手,用时越短,但是识别的准确度就越差。越大识别的越精准,但是响应的时间也会增加。默认值为0.5; 4.min_tracking_confience 表示最小的追踪可信度,越大手部追踪的越准确,相应的响应时间也就越长。默认值为0.5。


3)一个手部识别的简单代码:

   import cv2
   import mediapipe as mp
   mp_drawing = mp.solutions.drawing_utils
   mp_hands = mp.solutions.hands
   hands = mp_hands.Hands(
       static_image_mode=False,
       max_num_hands=2,
       min_detection_confidence=0.75,
       min_tracking_confidence=0.75)
   cap = cv2.VideoCapture(0)
   while True:
       ret, frame = cap.read()
       frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
       # 因为摄像头是镜像的,所以将摄像头水平翻转
       # 不是镜像的可以不翻转
       frame = cv2.flip(frame, 1)
       results = hands.process(frame)     # process()是手势识别最核心的方法,通过调用这个方法,将窗口对象作为参数,mediapipe就会将手势识别的信息存入到res对象中
       frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
       if results.multi_handedness:
           for hand_label in results.multi_handedness:
               print(hand_label)
       if results.multi_hand_landmarks:
           for hand_landmarks in results.multi_hand_landmarks:
               print('hand_landmarks:', hand_landmarks)
               # 关键点可视化
               mp_drawing.draw_landmarks(
                   frame, hand_landmarks, mp_hands.HAND_CONNECTIONS)
      cv2.imshow('MediaPipe Hands', frame)
       if cv2.waitKey(1) & 0xFF == 27:
           break
   cap.release()